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ABSTRACT: The chemical composition of the food crops is the main source to determine their nutritional
value and safety for consumption. The latest development in metabolomics characterizes the metabolic profile
of crop plants in a high-throughput experimental approach. It is an important branch of “omics” to identify,
quantify, and characterize metabolites and cellular regulatory pathway processes in various biological
species. The complete metabolite of an organism is called the metabolome. It can be assessed to know the
genetic or environmental differences in plant species. The metabolomics play a significant part in finding out
gene-environment interactions, mutant identification, phenotyping, and biomarkers' identification and
characterization. The concept of metabolomics is an emerging method to unravel the complications of
different metabolic pathway networks linked to various stress tolerance in crops. Advanced metabolomics is a
term that refers to the study of the metabolic profiling of crop plants that has been investigated using
analytical methods. The current challenges in the metabolomics study is being integrated with post-genomics
tools, which helps in the efficient dissection of molecular markers and related trait associations in crop plant
species. This review gives an overview of the metabolomics tools for crop improvement.
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INTRODUCTION

In the past few years, big tendencies have been
observed in different ‘Omics’ fields, specifically
genomics, proteomics, transcriptomics, metabolomics,
and epigenomics. The records developed with the help
of 'Omics' techniques have superior accuracy and pace
to the continued breeding applications in growing smart
climate and nutritionally enriched germplasm, which is
the prime step for enhancing food security (Parry and
Hawkesford, 2012). In recent years, the role of
phenomics-based breeding in improving agricultural
performance has emerged, and genomics has also
played a significant role in achieving greater genetic
gains. However, the various omics systems have
extremely good capacity in enhancing the knowledge of
crucial traits, allowing plant breeders and
biotechnologists to broaden new techniques for crop
improvement. In the omics techniques, metabolomics is
one of the complicated genomics studies and has
acquired a low interest in crop science, especially for
trait mapping and crop plant selections. Because of

their impact on plant biomass and architecture,
metabolites are an important part of plant metabolism
(Turner et al., 2016). Metabolomics has been one of the
most significant scientific advances in recent years,
paving the path for accurate metabolite profiling in
microorganisms and plants (Wuolikainen et al., 2016).
Because of the quick and fast advancement in
metabolomics, the metabolite research of transgenic
and mutant breeding holds a tremendous capacity to
recognize the metabolic pathways and to point out the
essential candidate genes (Hong et al., 2016).
Metabolomics also enables researchers to understand
gene function better, how a specific gene influences a
metabolic route, and the interconnections between
similar pathways, that are difficult by using traditional
techniques like microarray (Kusano and Saito, 2012).
The last decade has been characterized through the
adoption of genome-enhancing structures such as the
modern discovery of TALE (transcriptional activator-
like effector) proteins and the extensive adoption of the
clustered regularly interspaced short palindromic
repeats (CRISPR) and its associated (Cas) protein
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system (Wen et al., 2015). Technology inferences from
genomics, proteomics, transcriptomics, and
metabolomics will allow researchers to prioritize genes
for enhancing critical innovations in crop species. The
above-referred omics research is prolonged to discover
the related regulatory steps together with epigenetic
regulation, post-transcriptional and post-translation
modification. To that purpose, community-based
research tries to demonstrate molecular interactions
between biomolecules and disprove the genotype-
phenotype association (Anguraj, 2015). Thus,
metabolomics can facilitate the choice of advanced
developments of breeding materials. The availability of
complete genome sequences, genome-extensive genetic
variants, and cost-effective genotyping techniques,
combined with improvements in metabolomics, present
intriguing potential for effectively combining
metabolomics in crop breeding programs (Fernie and
Schauer, 2009; Sahoo et al., 2020). The use of
metabolomics research methodologies, mass
spectrometry (MS), and nuclear magnetic resonance
(NMR) spectroscopy has resulted in significant crop
improvement. The present framework in metabolomics
research has the potential to permit comprehensive
metabolite surveys.
In this background, the development of bioinformatics
coupled with the metabolomics databases, and other
diverse plant species have further implications for
metabolite annotation (Afendi et al., 2012). Metabolic
research yielded a wealth of information that could
improve plant growth schemes based on agricultural
value, yield and stress tolerance cultivar development.
Furthermore, the current era of genome-scale statistics
via DNA and RNA sequencing and mass spectroscopy
measurement of proteins and metabolites needs the
integration of the preceding information to plot a
holistic approach for crop improvement (Pandey et al.,
2016). The scientific community is currently facing
with the enormous task of dealing with massive multi-
omics data to engage in plant systems analysis
(Suravajhala et al., 2016). In such a scenario, an
advanced statistical and bioinformatics approach might
be required to research those statistical units
collectively for higher consolidation that may
subsequently be translated for enhancing plant
performance. In this review, recent studies of plant
metabolomics and the utility of metabolic engineering
for plant development are outlined.

DESIGN OF EXPERIMENTS AND WORKFLOW
OF METABOLOMICS ANALYSIS

A. Sample Preparation for the experiment
The preparation of samples is one of the most vital
components of metabolomics because it has an
excellent effect on the outcomes of metabolomics
studies (Kim et al., 2010). Plant tissues, including
seeds, stems, and roots, may be used for sample
preparation. In plant metabolomics experiments, the

high-resolution spinning technique is extensively used.
However, it is not always appropriate to extract
secondary plant metabolites that play a vital function in
plants' self-protection mechanism (Li et al., 2016). The
principal goal of sample preparation is to split
metabolites from undesirable factors and enhance the
metabolites. Therefore, the quality sample preparation
approach ought to be quick, economical, simple, easy
and uphold the sample integrity. Plant sample
preparation for metabolic evaluation involves four
steps, including collecting samples, quenching,
extraction, and sample evaluation. Because the plant
metabolome is vulnerable to enzymatic processes that
destroy different metabolites, sampling should be done
cautiously. To avoid metabolic changes, the plant
sample is usually quenched in liquid nitrogen right after
harvesting. Similarly, the age of the plant sample is
critical since metabolic profiling of younger leaves
differs significantly from the metabolic profile of
mature leaves to avoid enzymatic destruction of the
sample material (Li et al., 2016).

B. Data Mining and Processing of data in
Metabolomics Assessment
New, improved metabolomics technology reveals the
molecular complexity downstream of plants' genome,
proteome, and transcriptome, both in normal growth
and in response to various stimuli. Because of the
enormous and diverse variety of metabolites present in
different components of plant cells or tissues, complete
metabolome analysis has generated a massive amount
of data. The complexity of the nature and composition
of metabolites in varied plant samples has made
metabolomics data evaluation more difficult. Complete
metabolome assessment aims to categorize the various
metabolites of diverse plant samples brought through
many factors (Aoki-Kinoshita et al., 2006). Effective
metabolomics evaluation is based on wet and dry
science (Redestig et al., 2018). Powerful automatic
equipment is important to control large datasets and
annotate to keep the unprocessed information (Doerfler
et al., 2013). Basic steps involved in information data
mining include pre-processing, pre-treatment, and
statistical evaluation of information (Sun et al., 2012).
As a result, advanced statistical techniques are required
to target and measure all goals in a sample.

C. Statistical Tools and Characterization of Potential
Biomarkers
Metabolomics measures metabolite abundance as a
predictive biomarker for the diagnosis of disease. It
additionally gives ratings to the genetics, in addition to
environmental-caused modifications in metabolites'
concentration. The identity of biomarkers is based on
records, which involves the evaluation of different
statistical methods. Metabolic marker probing is
hooked up to the idea of linking reaction variables,
including the preferred phenotype, to explanatory
variables representing biomarkers. Although a couple
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of metabolite evaluations are needed to layout a
predictive model, canonical correlation evaluation
(CCA) is frequently implemented to observe the
maximum correlation among variables (Song et al.,
2016). Many statistical tools like ‘univariate evaluation’
are commonly achieved for biomarker discovery at
preliminary stages of structures biology, which research
one variable at a particular time (Saccenti et al., 2014).
On the other hand, ‘multivariate evaluation’ can be
used to screen plant cultivars and ecotypes, diagnose
diseases, and uncover metabolic markers. These tools
were used to quickly compare different genotypes and
samples (Fiehn et al., 2011).
Several multivariate statistical tools are available, such
as ANOVA, evaluation of variance-simultaneous
element evaluation (A-SCA), principal component
analysis (PCA), partial least squares-discriminant
evaluation (PLS-DA), and heat map evaluation. PCA is
identified as a crucial unsupervised multivariate
statistical tool used for the multidimensional reduction
technique (Xu et al., 2012). Orthogonal PLS techniques
also supply massive statistics useful for metabolic
marker selection (Chun et al., 2010). R programming
software has been developed, and the R package
language statistical tools are developed and designed to
offer statistical computing. A wide range of statistical
evaluation strategies is hired in R package programs
(Spicer et al., 2017). A few R software programs were
recently designed for reproducible records evaluation,
pathway-based modelling, and linear modelling for
quantitative records evaluation. MetabR (Ernest et al.,
2012), MetaboAnalystR (Chong et al., 2018), Lilikoi
(AlAkwaa et al., 2018), and MetaboDi (Mock et al.,
2018) are a few crucial R software programs to be used
for metabolomics evaluation.

D. Bioinformatics Tools and Databases Searching
Computational informatics is a pre-requirement of
metabolomics studies (Wishart et al., 2007). The
disposal of correct and monetary assessable systems has
pretty eased the layout and renovation of internet tools
that may be utilized by many researchers with little
bioinformatics capabilities and restrained computational
facilities (Gardinassi et al., 2017). XCMS is an internet
bioinformatics tool, which lets unprocessed information
be uploaded immediately and helps in statistical
evaluation and information processing (Tautenhahn et
al., 2012). However, XCMS servers cannot manage
large information due to finite space. Recently, the
XCMS has been installed for programmed information
switch in LC-MS experiments, which reduced
information processing time and improved the efficacy
of an internet system (Montenegro-Burke et al., 2017).
MetaGeneAlyse is an internet-based bioinformatics tool
that applies standard clustering techniques, like
unbiased aspect evaluation and k-means. This internet
device additionally offers many approaches for

statistical evaluation, consisting of pathway enrichment
evaluation, PLS-DA, and t-test (Daub et al., 2003).
A comprehensive internet-based platform that has been
hired in plant metabolomics for information
assessment, processing, and statistical evaluation is
MeltDB (Kessler et al., 2013). Other databases,
consisting of iMet-Q, MS-Dial, and MetAlign, are
operated through home windows graphical user
interfaces (Chang et al., 2016). MZedDB and KEGG
were specifically implemented to examine the
metabolome with a species-nonspecific or species-
specific origin (Draper et al., 2009). Galaxy-M, a fresh
new instrument, was recently developed to look at
untargeted metabolites using LC-MS techniques
(Davidson et al., 2016). Babelomics (Alonso et al.,
2015) and GenePattern (Reich et al., 2006) are omics-
internet-based programs that have been used to make
univariate and multivariate statistical analysis data
interpretation and data visualization.

PLATFORMS FOR METABOLOMICS
ANALYSIS

The description of plant metabolites in metabolic
profiling is drastically tough because of an inadequate
connection between the proteome and metabolome. In
metabolomics, no single method or technique may be
used to research all of the metabolites found in a
metabolome. Different metabolomics strategies consist
of mass spectrometry (Yadav et al., 2019), non-
destructive nuclear magnetic resonance spectroscopy
(Cuperlovic-Culf et al., 2019), high-performance thin-
layer chromatography (HPTLC), capillary
electrophoresis-mass spectrometry (Komatsu et al.,
2014), gas chromatography-mass spectrometry (Chang
et al., 2019), liquid chromatography-mass spectrometry
(Zhou et al., 2019), direct infusion mass spectrometry,
ultra-performance liquid chromatography, high-
resolution mass spectrometry (Thomason et al., 2018)
and fourier transform ion cyclotron resonance mass
spectrometry (Seybold et al., 2019). Table 1 lists out
the benefits and drawbacks of certain common
metabolomics testing techniques. NMR-based
metabolic profiling is a quick, easy, and effective
method for screening and identifying similar biological
samples. It maps metabolic pathways in a non-
destructive, selective, and extremely efficient manner
(Boiteau et al., 2018). The mass spectrometry method
benefits quick sample preparation and examination in
their natural state (Kang et al., 2019). For metabolic
profiling, GC-MS has been recognized as a high-
throughput analytical method, due to an electronic
impact ionization factor of supply provides
exceptionally accurate detection, separation, and
identity. Amino acids, natural acids, sugars, alkaloids,
lipids, ketones, esters, peptides, and sugar-phosphate
can all be probed by GC-MS (Jorge et al., 2016).
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Table 1: Benefits and drawbacks of some analytical techniques used in metabolomics.

Tools for Analysis Benefits Drawbacks Application

Liquid Chromatography-Mass
Spectrometry (LC-MS)

Good selectivity, Minimal sample
preparation, Covers a large portion of

the metabolome Less volume of sample
required, Highly sensitivity.

Suitable for targeted
profiling, Destructive, Ion

suppression, Laborious
sample preparation

Appropriate for secondary
metabolite analysis

Nuclear Magnetic Resonance
Spectroscopy (NMR)

Accurate quantification, Highly
reproducible, Provide rich information

about metabolite structure, Ease of
sample preparation, Quantitative

Low Sensitivity, High cost
of the instrument, Large

volume of sample is required

Comparative analysis of
samples, Non-destructive

Gas Chromatography-Mass
Spectrometry (GC-MS)

High resolving
Power, Supported by bioinformatics and
databases, More accurate, Suitable for

volatile compound analysis,

Destructive, Possible loss of
pseudo molecular ion,

Unsuitable for non-volatile
compounds,

Good for polar and
hydrophobic compounds such
as sugars, vitamins, organic

acids

Fourier-Transform Infrared
Spectroscopy (FT-IR)

Cost-effective, Provide more
information about data Direct

characterization and separation in mixed
samples, High-throughput analysis.

Isomer-related issues, Not
feasible for wet samples,

Less specificity
Recognition of unfamiliar

metabolites analysis

UNTARGETED DATA INTERPRETATION AND
ANALYSIS

High-resolution platforms like MS and NMR give rise
to spectral datasets, which are multidimensional and
require respective processing stages before
interpretation (Sevin et al., 2015). The pre-processing
of MS dataset begins with the use of open-online data
sources like XCMS (Forsberg et al., 2018), MetAlign
(Lommen and Kools, 2012), or Open MS (Rost et al.,
2016). Commercial software is more widely used in the
NMR platform, although open-source tools are
available for analysis. The significant metabolic
alterations between data sample groups are usually
detected using univariate methods such as Welch’s t-
test (pairwise analysis) and ANOVA (multi-group
analysis) or various multivariate statistical methods to
identify significantly disregulated metabolite features
and allow visualization of metabolomics datasets by
analysing multiple variables (Liland, 2011).

Clustering a group of samples can be significantly
found by using principal component analysis or partial
least squares analysis methods.
Such approaches were commonly used to compare
genetically modified varieties based on metabolite
profile fingerprints (Ren et al., 2015). Untargeted
metabolomics can determine the upregulated and down
regulated metabolites in a sample group with the
controls in combination with statistical analyses. The
molecular formula of the analyte can be inferred from
precise mass measurements and isotope abundance
ratios in circumstances where annotation using
chemical formulae is appropriate (Pluskal et al., 2012).
Still, the accurate confirmation of the identity of the
analyte relies on NMR and crystallographic methods.
Many publicly accessible spectral databases can be
available for finding out the mass spectral similarity
(Vinaixa et al., 2016). A list of widely used
bioinformatics and statistical tools for plant
metabolomics workflow is indexed in Table 2.

Table 2: Plant metabolomics analysis using bioinformatics tools.

Function Bioinformatics Tool Weblink

R package

MetabR
MetaboAnalystR

Lilikoi
MetaboDi

http://metabr.r-forge.r-project.org/
https://github.com/xialab/MetaboAnalystR/

https://github.com/lanagarmire/lilikoi/
http://github.com/andreasmock/MetaboDi/

Statistical analysis
MetaboAnalyst

MetAlign
Babelomics 5.0

www.metaboanalyst.ca/
www.metalign.nl

http://www.babelomics.org/

Data annotation

MetaboSearch
MetiTree

Metacrop 2.0
MetAssign
MZedDB
MaxQuant

http://omics.georgetown.edu/metabosearch.html
http://www.metitree.nl/

http://metacrop.ipk-gatersleben.de
http://mzmatch.sourceforge.net/

http://maltese.dbs.aber.ac.uk:8888/hrmet/index.html
https://www.maxquant.org/

Workflow analysis
Metab

Galaxy-M
Metabox

www.metabolomics.auckland.ac.nz/index.php/ downloads
https://github.com/Viant-Metabolomics/Galaxy-M

https://github.com/kwanjeeraw/metabox

Metabolite annotation and
Metabolite data analysis

METLIN
MetFrag

MetaGeneAlyse
MassBank

MarVis
MMCD
CFM-ID

https://metlin.scripps.edu/
http://c-ruttkies.github.io/MetFrag

http://metagenealyse.mpimp-golm.mpg.de/
http://www.massbank.jp/
http://marvis.gobics.de/

http://mmcd.nmrfam.wisc.edu/
http://cfmid.wishartlab.com

Structural annotation and CDK https://cdk.github.io

http://metabr.r-forge.r-project.org/
http://github.com/andreasmock/MetaboDi/
www.metaboanalyst.ca/
www.metalign.nl
http://www.babelomics.org/
http://omics.georgetown.edu/metabosearch.html
http://www.metitree.nl/
http://metacrop.ipk-gatersleben.de
http://mzmatch.sourceforge.net/
http://maltese.dbs.aber.ac.uk:8888/hrmet/index.html
www.maxquant.org/
www.metabolomics.auckland.ac.nz/index.php/
http://c-ruttkies.github.io/MetFrag
http://metagenealyse.mpimp-golm.mpg.de/
http://www.massbank.jp/
http://marvis.gobics.de/
http://mmcd.nmrfam.wisc.edu/
http://cfmid.wishartlab.com
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Metabolic models KEGG http://www.genome.jp/kegg/

Pathway analysis

MetExplore
MetPA
MSEA

Mummichog

http://metexplore.toulouse.inra.fr
http://metpa.metabolomics.ca
http://www.metaboanalyst.ca/

http://mummichog.org
Integrated compound

detection
MetFusion http://mgerlich.github.io/MetFusion/

Data processing and Data
analysis

MeltDB 2.0
metaP-server
MET-COFEA

iMet-Q
XCMS

MAVEN
MZmine2

https://meltdb.cebitec.uni-bielefeld.de
http://metabolomics.helmholtz-muenchen.de/metap2/

http://bioinfo.noble.org/manuscript-support/met-cofea/
http://ms.iis.sinica.edu.tw/comics/Software_iMet-Q.html

https://xcmsonline.scripps.edu
https://maven.apache.org/
http://mzmine.github.io/

MoNA and METLIN (Guijas et al., 2018) are two
extremely used important databases containing huge
verified experimental mass spectra datasets. In addition,
the GNPS (Global Natural Products Social Molecular
Networking) database allows uploading and sharing of
unidentified spectra datasets (Wang et al., 2016).
Although many plant metabolites are known to date,
only a small number of these can be annotated and
characterized using spectral databases. In silico
prediction statistical algorithms for spectral MS Data
Interpretation, such as MetFrag (Rtttkies et al., 2016),
CFM-ID (Allen et al., 2015), MS2LDA (Vander Hoofl
et al., 2016), and CSI: FingerID (Duhrkop et al., 2015)
are designed to find out the most identical chemical
structure that corresponds to a given experimental mass
spectrum using the chemical databases (Kim et al.,
2016).

DATA STORAGE ARCHIVING, SHARING, AND
CLOUD STORAGE

Data sharing is seen as an important part of scientific
research since it encourages the dissemination of
lengthy study findings and conclusions and the reuse
and repurposing of data. Most archives allow for data
sharing while yet allowing the owner to maintain
control over their information. Information sharing is
carried out by Email request, site, and archiving. FAIR
is a set of guiding principles for making data Findable,
Accessible, Interoperable, and Reusable for scientific
data management and stewardship, launched at Lorentz
workshop in 2014 (Wilkinson et al., 2016). Dataverse,
FigShare (http://figshare.com), Dryad, Mendeley Data
(https://data.mendeley.com/), Zenodo
(http://zenodo.org/), DataHub (http://datahub.io),
DANS (http://www.dans.knaw.nl/), GitHub
(https://github.com/), and EUDat are just a few of the
many general-purpose data repositories Zenodo
("Zenodo" n.d.) provides  for the  sharing  of  raw  data
and codes, whereas OSF (Open Science Framework)
(Foster, MSLS and Deardorff, MLIS) can assist in the
hosting of projects using a variety of data types and file
formats, and both provide digital object identities
(DOIs).
However, other public databases have been established
to store and share specific types of omics data as public
repositories throughout time. (e.g., genomics data in
NCBI-SRA (“SRA” n.d.) and EBI-ENA (European

Bioinformatics institute), proteomics data at PRIDE
(“PRIDE - Proteomics Identification Database” n.d.), or
metabolomics data at MetaboLights (“MetaboLights”
n.d.) (https://www.ebi.ac.uk/metabolights/),
Metabolomics Workbench (“Metabolomics Workbench
(Webpage)” n.d.)
(https://www.metabolomicsworkbench.org/), and
GNPS-MASSIVE (“GNPS” n.d.)
(https://gnps.ucsd.edu/), and other efforts on bringing
this together multi-omics data in a linked and
discoverable manner, in the form of OmicsDI
(“OmicsDI” n.d.) (Perez-Riverol et al. 2017).
XCMSOnline (https://xcmsonline.scripps.edu) also
offers data storage and a variety of analyses, including
targeted and untargeted data analysis. Biological
Magnetic Resonance Data Bank (BMRB:
http://www.bmrb.wisc.edu/deposit/) is a repository for
data from NMR Spectroscopy that accepts NMR
spectral parameters such as chemical shifts, coupling
constants, time-domain data, spectral peak lists,
relaxation data, other kinetic and thermodynamic data.
Unfortunately, like other omics domains such as
genomics, metabolomics suffers from a lack of data
reproducibility problems coming from a variety of
challenges, including the accessibility and archiving
status of computational tools and resources (Mangul et
al., 2018). Some of the available data repositories
which are dedicated to metabolomics data interpretation
are indexed in Fig. 1.

Fig 1. The available data repositories which are
dedicated to metabolomics data interpretation.

http://www.genome.jp/kegg/
http://metexplore.toulouse.inra.fr
http://metpa.metabolomics.ca
http://www.metaboanalyst.ca/
http://mummichog.org
http://mgerlich.github.io/MetFusion/
http://metabolomics.helmholtz-muenchen.de/metap2/
http://bioinfo.noble.org/manuscript-support/met-cofea/
http://ms.iis.sinica.edu.tw/comics/Software_iMet-Q.html
http://mzmine.github.io/
http://figshare.com
http://zenodo.org/
http://datahub.io
http://www.dans.knaw.nl/
www.ebi.ac.uk/metabolights/
www.metabolomicsworkbench.org/
http://www.bmrb.wisc.edu/deposit/
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APPLICATION OF METABOLOMICS
APPROACH IN CROP IMPROVEMENT

The most important biotechnological tool for
deciphering diverse stress tolerance in crop plant
species is metabolomics. During the life cycle of
various crop plants, metabolomics was frequently
employed to look for unique metabolites. Plants
respond similarly to biotic and abiotic stresses, but

these stresses cause changes in the plants' biochemical
and physiological processes. The activation of
particular metabolic networks in crop plants' cellular
mechanisms results in forming a novel bioactive
metabolic agent. Table 3 lists out the role of
metabolomics and the application of recent
metabolomics approaches in crop improvement.

Table 3: Metabolomics for stress management in crop plants.

Crop
Plants

Type of
Stress

Target Tissue
Platform

of
Analysis

The platform for
Data Analysis

Metabolite Products Reference

Rice Drought Leaf
GC/EI-

TOF-MS,
GC/MS

PCA, PLS-DA, Tag
Finder and NIST

Proline, GABA, Glutamate
and spermidine, Serine,
threonine arginine, and

asparagine

Ma et al., (2016)

Rice Salinity
Leaf,

Seedling,
Leaf, and root

GC/MS,
NMR

ANOVA, MS,
PLS-DA, PCA

Mannitol and sucrose,
Leucine, GABA, proline,

isoleucine, valine
Chang et al., (2019)

Rice Waterlogging Leaf
GC/MS,

NMR
PCA

GABA, glycine, alanine, 6-
phosphogluconate,

phenylalanine, and lactate
Locke et al., (2018)

Soybean Drought Leaf
H-NMR,
GC/MS

PCA PC-DFA
GABA, Sugars, and sugar

alcohols
Ogbaga et al.,

(2016)

Soybean Waterlogging
Leaf and

Roots
NMR

ANOVA, PCA, and
MATLAB

Isoflavones and kaempfero
Coutinho et al.,

(2018)

Maize Drought
Immature

kernels, Leaf-
blades

MS/MS,
GC/MS

PLS-DA, KEGG,
ANOVA, PCA

Carbohydrates, Myoinositol,
and glycine

Yang et al., (2018)

Maize Salinity Leaf and Root GC-MS
PCA, PLS-DA, and

SIMCA
Auxin, ABA, Proline, sucrose,

xylose and maltose
Zorb et al., (2013)

Maize Heat Leaf NMR PCA
GABA, inositol, fructose,

aspartate, sucrose, asparagine,
analine, valine, and proline

Sun et al., (2016)

Wheat Waterlogging Shoot
GC/MS,
LC/MS

ANOVA, PCA Tryptophan and methionine Zorb et al., (2013)

Wheat Drought
Roots and

leaves
GC-MS

PLS-DA, KEEG,
PCA

Tryptophan citric acid,
fumaric acid, malic acid, and

valine
Kang et al., 2019

Wheat Salinity
Root, Shoot,
and Leaves

HPLC,
GC-MS

ANOVA, PCA,
METABOLOME

EXPRESS

Fructose, Malic acid, glycine,
proline, Glutamic acid, Auxin,

ABA, lyxose, lysine,
mannose, proline, sorbitol,

and sucrose

Che-Othmen et al.,
(2019)

Wheat Heat
Flag Leaf,

Filling grains

LC-
MS/MS,
HPLC

PLS-DA, KEGG
Pipecolate and L-tryptophan,

G1p, and sucrose
Thomason et al.,

(2018)

Barley Drought Fifth leaf MS-EI
PROC

UNIVARIATE
Aromatic amino acids Hein et al., (2016)

Wheat
Fusarium

graminearum
Leaf NMR PCA

Trehalose, 3-hydroxybutarate,
asparagine, phenylalanine,
myoinositol, and L-alanine

Wheat
Wheat streak
mosaic virus

Leaf
UPLC-

QTOF/MS
PCA

Reduction in tryptophan,
isoleucine, and phenylalanine

Farahbakhsh et al.,
(2019)

Rice
Orseolia

oyzae
Leaf GC/MS ANOVA

Threonic acid and
heneicosanoic acid

Agarrwal et al.,
(2014)

Rice
Xanthomonas

oryzae pv.
oryzae

Leaf
GC/TOF

and
LC/TOF

KEGG,
MassHunter

Tyrosine and phenylalanine Sana et al., (2010)

Rice
Magnaporthe

grisea
Leaf

NMR,
GC/MS,

and
LC/MS

PCA, MATLAB
Cinnamate, proline,

glutamine, and malate
Jones et al., (2011)

Maize

Fusarium
graminearum
and Bipolaris

maydis

Root and Leaf

LC/MS,
FT-IR,

and NMR
ANOVA, PCA

flavonoids and polyphenols,
metabolites smiglaside and

smilaside Alignin
Figueroa et al.,

(2018)

Wheat

Lolium
rigidum,
Urochloa
panicoides

Root and
Shoot

LC-
MS/MS,
Q Trap

Analyst Software
Hydroxamic acids and

Benzoxazinoids
Mwendwa et al.,

(2016)

Legumes Weeds
Root and

shoot extracts

UHPLC,
QTOF-

MS
METLIN Flavonoids

Berrabah et al.,
(2019)
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CONCLUSION

Domestication and plant breeding have resulted in
large-scale genome duplication mutagenesis and
rearrangement events in ancestral crop genomes,
resulting in present-day plants. From Agrobacterium-
mediated T-DNA insertions to more recently improved
genome-modifying technologies, new genetic
engineering technique allows scientists to improve
plants by carefully introducing relevant improvements.
The loss of social recognition of genetic engineering
technology is essentially due to public worries
approximately whether or not present-day breeders can
completely apprehend the complexity of the brand-new
phenotypes from diverse genetic engineering strategies
and the ability dangers related to them. The metabolite-
focused framework provided here commonly targets
enhancing the present risk assessment method to deal
with the ever-developing complexity of biotech plants,
each with the strategies used (like multiplexed gene
modifying, epigenetic modifications) and with the
developments advanced. It is important to show that the
integration of metabolomics with other approaches such
as quantitative genetics, transcriptomics, and genetic
modification is very important for plant improvement.
With an effective combination of these modern
approaches, researchers can identify functional genes,
characterize large numbers of metabolites, prioritize
candidate genes for downstream analysis, and
ultimately commercialize them. It provides trait-
specific markers for enhancing metabolically important
traits.
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